The Boltzmann Perceptron Network: A Multi-Layered Feed-Forward Network Equivalent to the Boltzmann Machine
نویسندگان
چکیده
The concept of the stochastic Boltzmann machine (BM) is auractive for decision making and pattern classification purposes since the probability of attaining the network states is a function of the network energy. Hence, the probability of attaining particular energy minima may be associated with the probabilities of making certain decisions (or classifications). However, because of its stochastic nature, the complexity of the BM is fairly high and therefore such networks are not very likely to be used in practice. In this paper we suggest a way to alleviate this drawback by converting the stochastic BM into a deterministic network which we call the Boltzmann Perceptron Network (BPN). The BPN is functionally equivalent to the BM but has a feed-forward structure and low complexity. No annealing is required. The conditions under which such a convmion is feasible are given. A learning algorithm for the BPN based on the conjugate gradient method is also provided which is somewhat akin to the backpropagation algorithm.
منابع مشابه
Signal Prediction by Layered Feed - Forward Neural Network (RESEARCH NOTE).
In this paper a nonparametric neural network (NN) technique for prediction of future values of a signal based on its past history is presented. This approach bypasses modeling, identification, and parameter estimation phases that are required by conventional parametric techniques. A multi-layer feed forward NN is employed. It develops an internal model of the signal through a training operation...
متن کاملDeep Boltzmann Machines as Feed-Forward Hierarchies
The deep Boltzmann machine is a powerful model that extracts the hierarchical structure of observed data. While inference is typically slow due to its undirected nature, we argue that the emerging feature hierarchy is still explicit enough to be traversed in a feedforward fashion. The claim is corroborated by training a set of deep neural networks on real data and measuring the evolution of the...
متن کاملAdvances in Deep Learning
Deep neural networks have become increasingly more popular under the name of deep learning recently due to their success in challenging machine learning tasks. Although the popularity is mainly due to the recent successes, the history of neural networks goes as far back as 1958 when Rosenblatt presented a perceptron learning algorithm. Since then, various kinds of artificial neural networks hav...
متن کاملNeural Network Meta-Modeling of Steam Assisted Gravity Drainage Oil Recovery Processes
Production of highly viscous tar sand bitumen using Steam Assisted Gravity Drainage (SAGD) with a pair of horizontal wells has advantages over conventional steam flooding. This paper explores the use of Artificial Neural Networks (ANNs) as an alternative to the traditional SAGD simulation approach. Feed forward, multi-layered neural network meta-models are trained through the Back-...
متن کاملTopographic RBM as Robot Controller
In this research we propose learning a controller for a mobile robot with a topographic Restricted Boltzmann machine (tRBM). The topographic RBM generalizes the previously proposed Map-Initialized Perceptron (MIP) to a probabilistic model which learns a joint distribution of sensory states and continuous actions. Keywords— Topographical Structure, Restricted Boltzmann Machine, Mobile Robot, Imi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1988